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1. Introduction

In 2012, Samet et al. [20] introduced a concept of α − ψ- contractive type mappings
and established various fixed point theorems for mappings in complete metric spaces.
Thereafter, many papers have published on α − ψ− contractive mappings in various
spaces. For more detail see [9–11, 14] and references therein.

In 2012, Wardowski [22] introduced a new type of contractions called F -contraction
and proved new fixed point theorems concerning F -contraction. He generalized the
Banach contraction principle in a different way than as it was done by different investiga-
tors. Afterwards Secelean [21] proved fixed point theorems consisting of F -contractions
by Iterated function systems. Piri et al. [17] proved a fixed point result for F -Suzuki
contractions for some weaker conditions on the self map of a complete metric space which
generalizes the result of Wardowski.

Cosentino et al. [4] established some fixed point results of Hardy-Rogers-type for self-
mappings on complete metric spaces or complete ordered metric spaces. Lately, Acar et
al. [1] introduced the concept of generalized multivalued F -contraction mappings further
Altun et al. [2] extended multivalued mappings with δ-Distance and established fixed
point results in complete metric space. Sgroi et al.[18] established fixed point theorems
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for multivalued F -contractions and obtained the solution of certain functional and integral
equations, which was a proper generalization of some multivalued fixed point theorems
including Nadler’s. recently Ahmad et al. [3, 7] recalled the concept of F -contraction
to obtain some fixed point, and common fixed point results in the context of complete
metric spaces. Very recently Kutbi et al. [15] extend the concept of F -contraction to
obtain some fixed point results in complete metric space.
Throughout the article we denote by R the set of all real numbers, by R+ the set af all

positive real numbers and by N the set of all positive integers.
recollect some essential notations, required definitions, and primary results coherent with

the literature. For a nonempty set X, we denote by N(X) the class of all nonempty
subsets of X. Let (X, d) be a metric space. For x ∈ X and A ⊆ X, we denote D(x,A) =
inf {d(x, y) : y ∈ A}. We denote by CL(X) the class of all nonempty closed subsets of X,
by CB(X) the class of all nonempty closed and bounded subsets of X and by K(X) the
class of all compact subsets of X, Let H be the Hausdorff metric induced by the metric
d on X, that is

H(A,B) = max

{
sup
x∈A

D(x,B), sup
y∈B

D(y,A)

}
for every A,B ∈ CB(X). If T : X −→ CB(X) be a multi-valued. A point q ∈ X is said
to be a fixed point of T if q ∈ Tq.

Nadler [16] extended the Banach contraction principle to multivalued mappings.

Theorem 1 . [16] Let (X, d) be a complete metric space and T : X −→ CB(X) be a
multi-valued mapping such that for all x, y ∈ X

H(T (x), T (y)) ≤ kd(x, y)

where 0 < k < 1, Then T has a fixed point.

2. Preliminaries

In this section, we give some basic definitions, examples and fundamental results which
play an essential role in proving our results.

Definition 2. [20] Let T : X → X and α : X × X → [0,+∞). We say that T is
α-admissible if x, y ∈ X, α(x, y) ≥ 1 implies that α(Tx, Ty) ≥ 1.

Definition 3. [19] Let T : X → X and α, η : X × X → [0,+∞) be two functions.
We say that T is α-admissible mapping with respect to η if x, y ∈ X, α(x, y) ≥ η(x, y)
implies that α(Tx, Ty) ≥ η(Tx, Ty).

If η(x, y) = 1, then above definition reduces to definition 2. If α(x, y) = 1, then T is
called an η-subadmissible mapping.

Definition 4. [8] Let (X, d) be a metric space. Let T : X → X and α, η : X ×X →
[0,+∞) be two functions. We say that T is α − η-continuous mapping on (X, d) if for
given x ∈ X, and sequence {xn} with

xn → x as n→∞, α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N⇒ Txn → Tx.
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Definition 5. [6] Let (X, d) be ametric space, T : X → 2X be a given closed-valued
multifunction and α : X×X −→ [0,+∞). We say that T is called α∗-admissible whenever
α(x, y) ≥ 1 implies that α∗(Tx, Ty) ≥ 1.

Hussain et al. [9] modified the notions of α∗-admissible and α∗-ψ-contractive mappings
as follows:

Definition 6. [9] Let T : X → 2X be a multifunction, α, η : X × X → [0,+∞)
be two functions where η is bounded. We say that T is α∗-admissible mapping with
respect to η if α(x, y) ≥ η(x, y) implies α∗(Tx, Ty) ≥ η∗(Tx, Ty), x, y ∈ X, where
α∗(A,B) = inf {α(x, y) : x ∈ A, y ∈ B} and η∗(A,B) = sup {η(x, y) : x ∈ A, y ∈ B}.

If η(x, y) = 1 for all x, y ∈ X, then this definition reduces to Definition 4.1[9] . In the
case α(x, y) = 1 for all x, y ∈ X, T is called η∗-subadmissible mapping.

Definition 7. [12] Let (X, d) be a metric space. Let T : X → CL(X) and α : X ×
X → [0,+∞) be two functions. We say that T is α-continuous multivalued mapping on
(CL(X), H) if for given x ∈ X, and sequence {xn} with lim

n−→∞
d(xn, x) = 0 , α(xn, xn+1) ≥

1 for all n ∈ N =⇒ lim
n−→∞

H(Txn, Tx) = 0.

In 1962, Edelstein proved the following version of the Banach contraction principle.

Theorem 8. [5]. Let (X, d) be a metric space and T : X → X be a self mapping.
Assume that

d(Tx, Ty) < d(x, y), holds for all x, y ∈ X with x 6= y.

Then T has a unique fixed point in X.
Klim et al. [13] defined the F -contraction as follows.

Definition 9. [13] Let (X, d) be a metric space. A mapping T : X → X is said to be
an F contraction if there exists τ > 0 such that

∀x, y ∈ X, d(Tx, Ty) > 0⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y)) , (1.1)

where F : R+ → R is a mapping satisfying the following conditions:
(F1) F is strictly increasing, i.e. for all x, y ∈ R+ such that x < y, F (x) < F (y);
(F2) For each sequence {αn}∞n=1 of positive numbers, limn→∞ αn = 0 if and only if
limn→∞ F (αn) = −∞;
(F3) There exists k ∈ (0, 1) such that limα→ 0+αkF (α) = 0.

We denote by ∆F , the set of all functions satisfying the conditions (F1)-(F3).

Example 10. [22] Let F : R+ → R be given by the formula F (α) = lnα. It is clear
that F satisfied (F1)-(F2)-(F3) for any k ∈ (0, 1). Each mapping T : X → X satisfiying
(1.1) is an F -contraction such that

d(Tx, Ty) ≤ e−τd(x, y), for all x, y ∈ X, Tx 6= Ty.

It is clear that for x, y ∈ X such that Tx = Ty the inequality d(Tx, Ty) ≤ e−τd(x, y),
also holds, i.e. T is a Banach contraction.

Example 11. [22] If F (α) = lnα + α, α > 0 then F satisfies (F1)-(F3) and the
condition (1.1) is of the form

d(Tx, Ty)

d(x, y)
ed(Tx,Ty)−d(x,y) ≤ e−τ , for all x, y ∈ X, Tx 6= Ty.
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Remarks 12. From (F1) and (1.1) it is easy to conclude that every F -contraction is
necessarily continuous.

Wardowski [22] stated a modified version of the Banach contraction principle as follows.

Theorem 13 . [22] Let (X, d) be a complete metric space and let T : X → X be an F
contraction. Then T has a unique fixed point x∗ ∈ X and for every x ∈ X the sequence
{Tnx}n∈N converges to x∗.Lately, Acar et al. [1] introduced the concept of generalized
multivalued F -contraction mappings and established a fixed point result, which was a
proper generalization of some multivalued fixed point theorems including Nadler’s.

Definition 14. [1] Let (X, d) be a metric space and T : X −→ CB(X) be a mapping.
Then T is said to be a generalized multivalued F -contraction if F ∈ ∆F and there exists
τ > 0 such that

x, y ∈ X, H(Tx, Ty) > 0 =⇒ τ + F (H(Tx, Ty)) ≤ F (M(x, y)),

where

M(x, y) = max{d(x, y), D(x, Tx), D(y, Ty),
1

2
[D(x, Ty) +D(y, Tx)]}.

Theorem 15. [1] Let (X, d) be a complete metric space and T : X −→ K(X) be a
generalized multivalued F -contraction. If T or F is continuous, then T has a fixed point
in X.

We now introduce the concept of α-η-continuous for multivalued mappings in metric
spaces.

Definition 16. Let (X, d) be a metric space. Let T : X → CB(X) and α : X ×X →
[0,+∞) be function. We say that T is α∗-admissible multivalued mapping on (CB(X), H)

if for given x ∈ X, and sequence {xn} with xn
d−→ x as n → ∞, α(xn, xn+1) ≥ 1

for all n ∈ N ⇒ Txn
H→ Tx, that is lim

n−→∞
d(xn, x) = 0 and α(xn, xn+1) ≥ 1 for all

n ∈ N =⇒ lim
n−→∞

H(Txn, Tx) = 0.

Definition 17. Let (X, d) be a metric space. Let T : X → CB(X) and α, η :
X × X → [0,+∞) be two functions. We say that T is α − η-continuous multivalued

mapping on (CB(X), H) if for given x ∈ X, and sequence {xn} with xn
d−→ x as n→∞,

α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N ⇒ Txn
H→ Tx, that is lim

−→∞
d(xn, x) = 0 and

α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N =⇒ lim
n−→∞

H(Txn, Tx) = 0.

3. Fixed Point Results for α∗-τ-F -Contraction

In this section, we define a contraction called α∗-τ -F -contraction for multivalued map-
ping and obtain some new fixed point theorems for such contraction in the setting of
complete metric spaces. We define multivalued α∗-τ -F -contraction as follows:

Definition 18. Let (X, d) be a metric space and T : X −→ CB (X) be an α∗-
admissible multivalued mapping. Also suppose that τ : R+ → R+ be increasing function.
We say that T is multivalued α∗-τ -F -contraction if for x, y ∈ X, and H(Tx, Ty) > 0 we
have

2τ(M(x, y)) + α∗(Tx, Ty)F (H(Tx, Ty)) ≤ F (M(x, y)) , (3.1)
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where

M(x, y) = max {d(x, y), D(x, Tx), D(y, Ty)}

and F ∈ ∆F .
Our main result is the following.

Theorem 19. Let (X, d) be a complete metric space. Let T : X −→ CB (X) satisfying
the following assertions:

(i) T is an α∗-admissible multivalued mapping;
(ii) T is multivalued α∗-τ -F -contraction;
(iii) there exists x0 ∈ X such that α∗(x0, Tx0) ≥ 1;
(iv) ∀t≥0 lim infs→t+ τ(s) > 0;
(v) T is continuous.
Then T has a fixed point in X.

Proof. Let x0 ∈ X, such that α∗(x0, Tx0) ≥ 1. Since T is an α∗-admissible mapping
then there exists x1 ∈ Tx0 such that

α∗(x0, Tx0) ≥ 1. (3.2)

If x1 ∈ Tx1, then x1 is a fixed point of T . So, we assume that x0 6= x1, then Tx0 6= Tx1.
Since F is continuous from the right, there exists a real number h > 1 such that

F (hH (Tx0, Tx1)) < F (H (Tx0, Tx1))+τ (max {d(x0, x1)D(x0, Tx0), D(x1, Tx1)})

Now from D (x1, Tx1) < hH (Tx0, Tx1) , we deduce that there exists x2 ∈ Tx1 such that
d (x1, x2) ≤ hH (Tx0, Tx1) . Consequently, we obtain

F (D(x1, Tx1)) ≤ F (hH(Tx0, Tx1))

< F (H(Tx0, Tx1)) + τ (max {d(x0, x1)D(x0, Tx0), D(x1, Tx1)}) .

Which implies

2τ (max {d(x0, x1)D(x0, Tx0), D(x1, Tx1)}) + F (d(x1, x2))

≤ 2τ (max {d(x0, x1)D(x0, Tx0), D(x1, Tx1)}) + F (H(Tx0, Tx1)) +

τ (max {D(x0, Tx0), D(x1, Tx1)})
≤ F (max {D(x0, Tx0), D(x1, Tx1)}) + τ (max {D(x0, Tx0), D(x1, Tx1)}) .

In this case max {D(x0, Tx0), D(x1, Tx1)} = D(x1, Tx1) is impossible, because

F (D(x1, Tx1)) ≤ α∗(Tx0, Tx1)F (H(Tx0, Tx1))

≤ F (D(x1, Tx1))− τ(D(x1, Tx1))

< F (D(x1, Tx1)) .

Which is a contradiction. Thus

F (d(x1, Tx1)) ≤ α∗(Tx0, Tx1)F (H(Tx0, Tx1))

≤ F (D(x0, Tx0))− τ(D(x0, Tx0)).

By continuing this process, we obtain a sequence {xn} ⊂ X such that xn /∈ Txn, xn+1 ∈
Txn,

α∗(xn−1, Txn−1) = α∗(xn−1, xn) ≥ 1,
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Therefore, we obtain

F (d(xn, Txn)) ≤ α∗(Txn−1, Txn)F (d(Txn−1, Txn))

≤ F (d(xn−1, xn))− τ(d(xn−1, xn)).

So, sequence {d(xn, xn+1)} is nonnegative and nonincreasing. It is clear that {d(xn, xn+1)}
is a decreasing sequence and hence convergent. Then we prove that d(xn, xn+1)→ 0.From
(iii) there exists c > 0 and n ∈ N such that τ (d(xn, xn+1)) > c for all n > n0. Thus, we
obtain

F (d(xn, xn+1)) ≤ F (d(xn−1, xn))− τ(d(xn−1, xn))

≤ F (d(xn−2, xn−1))− τ(d(xn−2, xn−1))− τ(d(xn−1, xn))

...

≤ F (d(x0, x1))− τ(d(x0, x1))− · · · − τ(d(xn−1, xn))

= F (d(x0, x1))− (τ(d(x0, x1)) + · · ·+ τ(d(xn0−1, xn0
)))

− (τ(d(xn0
, xn0+1)) + · · ·+ τ(d(xn−1, xn)))

≤ F (d(x0, x1))− (n− n0) c3.3 (3.1)

Since F ∈ ∆F , so by taking limit as n −→∞in (3.3), we deduce

lim
n−→∞

F (d (xn, xn+1)) = −∞ ⇐⇒ lim
n−→∞

d (xn, xn+1) = 0. (3.4)

Now from (F3), there exists 0 < k < 1 such that

lim
n−→∞

[d (xn, xn+1)]
k
F (d (xn, xn+1)) = 0. (3.5)

By (3.3), we have

d (xn, xn+1)
k
F (d (xn, xn+1))− d (xn, xn+1)

k
F (d (x0, x1)) 3.6 (3.2)

≤ d (xn, xn+1)
k

[F (d (x0, x1)− (n− n0) c)]− d (xn, xn+1)
k
F (d (x0, x1))

= − (n− n0) c [d (xn, xn+1)]
k ≤ 0.

Letting n −→∞ in (3.6) and applying (3.4) and (3.5), we have,

lim
n−→∞

n [d (xn, xn+1)]
k

= 0. (3.7)

We observe that from (3.7), then there exists n1 ∈ N, such that n (d(xn, xn+1))
k ≤ 1 for

all n ≥ n1, we get

d(xn, xn+1) ≤ 1

n
1
k

for all n ≥ n1. (3.8)
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Now, m,n ∈ N such that m > n ≥ n1. Then, by the triangle inequality and from (3.8)
we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+3) + ...+ d(xm−1, xm)3.9(3.3)

=

m−1∑
i=n

d(xi, xi+1)

≤
∞∑
i=n

d(xi, xi+1)

≤
∞∑
i=n

1

i
1
k

.

The series
∑∞
i=n

1

i
1
k

is convergent. By taking limit as n→∞, in (3.9), we have

lim
n,m→∞

d(xn, xm) = 0.

Hence {xn} is a Cauchy sequence. Since X is a complete metric space, there exists x∗ ∈ X
such that lim

n−→∞
d(xn, x

∗) = 0. By (v) T is continuous, we get

lim
n−→∞

H(Txn, Tx
∗) = 0.

Now we obtain

D (x∗, Tx∗) = lim
n−→∞

D(xn+1, Tx
∗) ≤ lim

n−→∞
H(Txn, Tx

∗) = 0.

Therefore, x∗ ∈ Tx∗ and hence T has a fixed point.

Theorem 20 . Let (X, d) be a complete metric space. Let T : X −→ CB (X)
satisfying the following assertions:

(i) T is multivalued α∗-admissible mapping;
(ii) T is multivalued α∗-τ -F -contraction;
(iii) there exists x0 ∈ X such that α∗(x0, Tx0) ≥ 1;
(iv) ∀t≥0 lim infs→t+ τ(s) > 0;
(v) if {xn} is a sequence in X such that α∗(xn, xn+1) ≥ 1 with xn → x∗ as n → ∞

then α∗(xn, x
∗) ≥ 1 holds for all n ∈ N.

Then T has a fixed point in X.

Proof. As similar lines of the Theorem 19, Since, by (v), α∗(xn+1, x
∗) ≥ 1 for all n ∈ N.

Then there exists a subsequence{xnk
} of {xn} such that

α∗(xnk+1, x
∗) ≥ 1. (3.10)

From (2.1), we have

τ(M(xnk
, x∗)) + α(Txnk

, Tx∗)F (H(Txnk
, Tx∗)) ≤ F (M(xnk

, x∗))

This implies

τ(max {d(xnk
, x∗), D(xnk

, Txnk
), D(x∗, Tx∗)}) + α(Txnk

, Tx∗)F (H(Txnk
, Tx∗))

≤ F (max {d(xnk
, x∗), D(xnk

, Txnk
), D(x∗, Tx∗)})

Using the continuity of F and the fact that

lim
k→∞

d(xnk
, x∗) = 0 = lim

k→∞
d(xnk+1, x

∗) (3.11)
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we obtain

τ (D(x∗, Tx∗)) + F (D(x∗, Tx∗)) ≤ F (D(x∗, Tx∗)) .

Which is a contradiction. Therefore, x∗ ∈ Tx∗, implies x∗ is a fixed point of T .
In the following we extend the Wardowski type fixed point theorem.

4. Fixed Point Results for α∗-η-τF -Contraction

In this section, we extend α∗-τ -F -contraction into α∗-η-τF -contraction and obtained
some new fixed point theorems in the setting of complete metric space. We define α∗-η-
τF -contraction as follows:

Definition 21. Let (X, d) be a metric space and T : X −→ CB (X) be an α∗-
admissible multivalued mapping with respect to η∗. Also suppose that α, η : X × X →
[0,+∞), τ : R+ → R+ be three functions. We say that T is multivalued α∗-η-τF -
contraction if for all x, y ∈ X, with η∗(x, Tx) ≤ α∗(x, y) and H(Tx, Ty) > 0, we have

2τ(M(x, y)) + F (H(Tx, Ty)) ≤ F (M(x, y)) (3.12)

where

M(x, y) = max {d(x, y), D(x, Tx), D(y, Ty)}

and F ∈ ∆F .
Now we state our result.

Theorem 22. Let (X, d) be a complete metric space. Let T : X −→ CB (X) satisfying
the following assertions:

(i) T is multivalued α∗-admissible mapping with respect to η;
(ii) T is multivalued α∗-η-τF -contraction;
(iii) there exists x0 ∈ X such that α∗(x0, Tx0) ≥ 1;
(iv) ∀t≥0 lim infs→t+ τ(s) > 0;
(v) T is α− η-continuous multivalued mapping.
Then T has a fixed point in X.

Proof. Let x0 ∈ X, such that α∗(x0, Tx0) ≥ η∗(x0, Tx0). Since T is an α∗-admissible
mapping with respect to η then there exists x1 ∈ Tx0 such that

α(x0, x1) = α∗(x0, Tx0) ≥ η∗(x0, Tx0) = η(x0, x1). (3.13)

If x1 ∈ Tx1, then x1 is a fixed point of T . So, we assume that x0 6= x1, then Tx0 6= Tx1.
Since F is continuous from the right, there exists a real number h > 1 such that

F (hH (Tx0, Tx1)) < F (H (Tx0, Tx1))+τ (max {d(x0, x1)D(x0, Tx0), D(x1, Tx1)})

Now from D (x1, Tx1) < hH (Tx0, Tx1) , we deduce that there exists x2 ∈ Tx1 such that
d (x1, x2) ≤ hH (Tx0, Tx1) . Consequently, we obtain

F (D(x1, Tx1)) ≤ F (hH(Tx0, Tx1))

< F (H(Tx0, Tx1)) + τ (max {d(x0, x1)D(x0, Tx0), D(x1, Tx1)}) .
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Which implies

2τ (max {d(x0, x1)D(x0, Tx0), D(x1, Tx1)}) + F (d(x1, x2))

≤ 2τ (max {d(x0, x1)D(x0, Tx0), D(x1, Tx1)}) + F (H(Tx0, Tx1)) +

τ (max {D(x0, Tx0), D(x1, Tx1)})
≤ F (max {D(x0, Tx0), D(x1, Tx1)}) + τ (max {D(x0, Tx0), D(x1, Tx1)}) .

In this case max {D(x0, Tx0), D(x1, Tx1)} = D(x1, Tx1) is impossible, because

F (D(x1, Tx1)) ≤ α∗(Tx0, Tx1)F (H(Tx0, Tx1))

≤ F (D(x1, Tx1))− τ(D(x1, Tx1))

< F (D(x1, Tx1)) .

Which is a contradiction. Thus

F (D(x1, Tx1)) ≤ α∗(Tx0, Tx1)F (H(Tx0, Tx1))

≤ F (D(x0, Tx0))− τ(D(x0, Tx0)).

By continuing this process, we obtain a sequence {xn} ⊂ X such that xn /∈ Txn, xn+1 ∈
Txn,

η(xn−1, xn) = η∗(xn−1, Txn−1) ≤ α∗(xn−1, Txn−1) = α(xn−1, xn). (3.14)

rest of proof follows similar lines as in Theorem 19.

Corollary 23. [8] Let (X, d) be a complete metric space. Let T : X → X be a
self-mapping satisfying the following assertions:

(i) T is an α-admissible mapping with respect to η;
(ii) If for x, y ∈ X with η(x, Tx) ≤ α(x, y) and d(Tx, Ty) > 0, we have

τ + F (d(Tx, Ty)) ≤ F (d(x, y)) .

where τ > 0 and F ∈ ∆F .
(iii) there exists x0 ∈ X such that α(x0, Tx0) ≥ η(x0, Tx0);
(iv) T is an α− η-continuous.
Then T has a fixed point in X. Moreover, T has a unique fixed point when α(x, y) ≥

η(x, y) for all x, y ∈ Fix(T ).

Example 24. Let X = [0, 1], and T : X → CB(X) be defined as Tx =
[
0, x3

]
and d be

the usual metric on X. Define α, η : X ×X −→ [0,∞) , τ : R+ −→ R+ and F : R+ −→ R
by α(x, y) = 1

2 , η(x, y) = 1
4 , τ(t) = ln

(√
t
)

and F (t) = ln(t) + t for all t > 0. Then for all
x, y ∈ X , Tx 6= Ty, we obtain

τ (M(x, y)) + F (d(Tx, Ty))

=
1

2
ln(t) + ln(d(Tx, Ty)) + d(Tx, Ty)

≤ ln(t) + ln(
1

3
|y − x|) +

1

3
|y − x|

≤ ln(t) + ln(
1

t
) + ln(

1

3
|y − x|) +

1

3
|y − x|

= F (d(x, y))

≤ F (M(x, y)).

Bangmod-JMCS−jmcs@kmutt.ac.th c©2015 By TaCS Center.



Bangmod Int. J. Math. & Comp. Sci., 2015 ISSN: 2408-154X 145

Therefore T is an α∗-η-τF -contraction. Thus all conditions of above theorems are
satisfied and 0 is a fixed point of T .
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King Mongkutâes University of Technology Thonburi (KMUTT)

126 Pracha Uthit Road, Bang Mod, Thung Khru, Bangkok, Thailand 10140

Website: http://tacs.kmutt.ac.th/

Email: tacs@kmutt.ac.th

Bangmod-JMCS−jmcs@kmutt.ac.th c©2015 By TaCS Center.


	Introduction
	Preliminaries
	Fixed Point Results for –F -Contraction
	Fixed Point Results for –F-Contraction

