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1. Introduction and Preliminaries

The notion of fuzzy sets was initially investigated by Zadeh [15] in 1965. Since then,
to use this concept in topology and analysis, many authors have expansively developed
the theory of fuzzy sets and applications. Attanassov [2] introduced and studied the
concept of intuitionistic fuzzy sets as a generalization of fuzzy sets. In 2004, Park [10]
defined the notion of intuitionistic fuzzy metric space with the help of continuous t-norms
and continuous t-conorms as a generalization of fuzzy metric space due to George and
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Veeramani [3]. Mustafa and Sims [7] introduced a G-metric space and obtained some
fixed point theorems in it. Abbas et al. [1] established the notion of A- metric spaces, a
generalization of S- metric space [12]. Vishal Gupta and Ashima Kanwar [14] introduce
the V- fuzzy metric space. We introduce new generalized intuitionistic fuzzy metric spaces
and discuss their properties. We prove coupled common fixed point theorems for mixed
weakly monotone maps in partial ordered in generalized intuitionistic fuzzy metric spaces.

Definition 1.1. [1] Let X be a nonempty set.A function A : Xn → [0,+∞] is called an
A-metric on X if for any xi, a ∈ X, I = 1, 2, 3, ..., n, the following conditions hold:
(A− 1) A(x1, x2, x3, ..., xn) ≥ 0,
(A− 2) A(x1, x2, x3, ..., xn) = 0, if and only if x1 = x2 = x3 = .... = xn = 0,
(A− 3) A(x1, x2, x3, ..., xn) ≤ A(x1, x1, x1, ..., (x1)n−1, a) +A(x2, x2, x2, ..., (x2)n−1, a)
+...+A(xn, xn, xn, ..., (xn)n−1, a).
The pair (X,A) is called an A -metric space.

Example 1.2. [1] Let X = R Define the function A : Xn → [0,+∞] by
A(x1, x2, x3, ..., xn) = Σn

i=1Σi>j |xi − yj |. Then (X,A) is called the usual A-metric space.

Definition 1.3. [14] Let X be a nonempty set. A triple (X,V, ∗) is said to be a V- fuzzy
metric space (denoted by VF -space), where ∗ is a continuous t-norm, and V is a fuzzy
set on Xn × (0,∞) satisfying the following conditions for all t, s > 0:
(V F − 1) V (x, x, x, ..., x, y, t) > 0 for all x, y ∈ X with x 6= y,
(V F − 2) V (x1, x1, x1, ..., x1, x2, t) ≥ V (x1, x2, x3, ..., xn, t) for all x1, x2, x3, ..., xn ∈ X
with x2 6= x3 6= ... 6= xn,
(V F − 3) V (x1, x2, x3, ..., xn, t) = 1 if and only if x1 = x2 = x3 = ... = xn,
(V F − 4) V (x1, x2, x3, ..., xn, t) = V (p(x1, x2, x3, ..., xn), t) where, p is a permutation
function,
(V F − 5) V (x1, x2, x3, ..., xn−1, t+ s) ≥ V (x1, x2, x3, ..., xn−1, l, t) ∗ V (l, l, l, ..., l, xn, s),
(V F − 6) lim

n→∞
V (x1, x2, x3, ..., xn, t) = 1,

(V F − 7) V (x1, x2, x3, ..., xn, .) : (0,∞)→ [0, 1] is continuous.

2. Generalized Intuitionistic Fuzzy Metric Space

Definition 2.1. Let X be a nonempty set.A triple (X,V,W, ∗,♦) is said to be a general-
ized intuitionistic fuzzy metric space (denoted by GIFM -space),where ∗ is a continuous
t-norm, ♦ is a continuous t-conorm and V,W are fuzzy sets on Xn× (0,∞) satisfying the
following conditions, for every x1, x2, x3, ..., xn, l ∈ X, t, s > 0,

(i) V (x1, x2, x3, ..., xn, t) +W (x1, x2, x3, ..., xn, t) ≤ 1,
(ii) V (x, x, x, ..., x, y, t) > 0 for all x, y ∈ X with x 6= y,
(iii) V (x1, x1, x1, ..., x1, x2, t) ≥ V (x1, x2, x3, ..., xn, t) for all x1, x2, x3, ..., xn ∈ X

with x2 6= x3 6= ... 6= xn,
(iv) V (x1, x2, x3, ..., xn, t) = 1 if and only if x1 = x2 = x3 = ... = xn,
(v) V (x1, x2, x3, ..., xn, t) = V (p(x1, x2, x3, ..., xn), t), where p is a permutation func-

tion,
(vi) V (x1, x2, x3, ..., xn−1, t+ s) ≥ V (x1, x2, x3, ..., xn−1, l, t) ∗ V (l, l, l, ..., l, xn, s),
(vii) V (x1, x2, x3, ..., xn, .) : (0,∞)→ [0, 1] is continuous,
(viii) V is a non decreasing function on R+, lim

n→∞
V (x1, x2, x3, ..., xn, t) = 1 and

lim
t→0

V (x1, x2, x3, ..., xn, t) = 0, for all x1, x2, x3, ..., xn ∈ X, t > 0,

(ix) W (x, x, x, ..., x, y, t) < 1 for all x, y ∈ X with x 6= y,
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(x) W (x1, x1, x1, ..., x1, x2, t) ≤ W (x1, x2, x3, ..., xn, t) for all x1, x2, x3, ..., xn ∈ X
with x2 6= x3 6= ... 6= xn,

(xi) W (x1, x2, x3, ..., xn, t) = 0 if and only if x1 = x2 = x3 = ... = xn,
(xii) W (x1, x2, x3, ..., xn, t) = W (p(x1, x2, x3, ..., xn), t), where p is a permutation

function,
(xiii) W (x1, x2, x3, ..., xn−1, t+ s) ≤W (x1, x2, x3, ..., xn−1, l, t)♦W (l, l, l, ..., l, xn, s),
(xiv) W (x1, x2, x3, ..., xn, .) : (0,∞)→ [0, 1] is continuous,
(xv) W is a non increasing function on R+, lim

n→∞
W (x1, x2, x3, ..., xn, t) = 0, and

lim
t→0

W (x1, x2, x3, ..., xn, t) = 1, for all x1, x2, x3, ..., xn ∈ X, t > 0.

In this case, the pair (V,W ) is called an generalized intuitionistic fuzzy metric spaces.

Example 2.2. Let (X,V ) be a V - metric space. For all x1, x2, x3, ..., xn ∈ X and every
t > 0, consider (V,W ) to be fuzzy sets on Xn × (0,∞) define by V (x1, x2, x3, ..., xn, t) =

t

t+A(x1, x2, x3, ..., xn)
, W (x1, x2, x3, ..., xn, t) =

A(x1, x2, x3, ..., xn)

t+A(x1, x2, x3, ..., xn)
and denote a ∗

b = ab and a♦b = min{a+b, 1}. Then (X,V,W, ∗,♦) is an generalized intuitionistic fuzzy
metric spaces.

Lemma 2.3. Let (X,V,W, ∗,♦) be a generalized intuitionistic fuzzy metric space. Then
V (x1, x2, x3, ..., xn, t) is non-decreasing and W (x1, x2, x3, ..., xn, t) non-increasing with re-
spect to t.

Proof. Since t > 0 and t+ s > t for s > 0, by letting l = xn is a condition (vi) and (xiii)
of a (V,W ) are fuzzy metric space, we get
V (x1, x2, x3, ..., xn−1, xn, t+ s) ≥ V (x1, x2, x3, ..., xn−1, xn, t) ∗ V (xn, xn, xn, ..., xn, xn, s)
and
W (x1, x2, x3, ..., xn−1, xn, t+s) ≤W (x1, x2, x3, ..., xn−1, xn, t)♦W (xn, xn, xn, ..., xn, xn, s)
This implies that

V (x1, x2, x3, ..., xn−1, xn, t+ s) ≥ V (x1, x2, x3, ..., xn−1, xn, t)

and

W (x1, x2, x3, ..., xn−1, xn, t+ s) ≤W (x1, x2, x3, ..., xn−1, xn, t).

So, V (x1, x2, x3, ..., xn, t) is non-decreasing and W (x1, x2, x3, ..., xn, t) non-increasing with
respect to t.

Lemma 2.4. Let (X,V,W, ∗,♦) be a generalized intuitionistic fuzzy metric space such
that

V (x1, x2, x3, ..., xn, kt) ≥ V (x1, x2, x3, ..., xn, t)

and

W (x1, x2, x3, ..., xn, kt) ≤W (x1, x2, x3, ..., xn, t)

with k ∈ (0, 1). Then x1 = x2 = x3 = ... = xn

Proof. By assumption,

V (x1, x2, x3, ..., xn, kt) ≥ V (x1, x2, x3, ..., xn, t) and

W (x1, x2, x3, ..., xn, kt) ≤ W (x1, x2, x3, ..., xn, t) for t > 0. (2.1)

Bangmod-JMCS−jmcs@kmutt.ac.th c©2016 By TaCS Center.



Bangmod Int. J. Math. & Comp. Sci., 2016 ISSN: 2408-154X 85

Since kt < t and by Lemma 2.3, we have

V (x1, x2, x3, ..., xn, kt) ≤ V (x1, x2, x3, ..., xn, t) and

W (x1, x2, x3, ..., xn, kt) ≥ W (x1, x2, x3, ..., xn, t). (2.2)

From (2.1), (2.2) and the definition of a generalized intuitionistic fuzzy metric space, we
get x1 = x2 = x3 = ... = xn.

Definition 2.5. Let (X,V,W, ∗,♦) be a generalized intuitionistic fuzzy metric space. A
sequence {xr} is said to converge to a point x ∈ X if V (xr, xr, xr, ..., xr, x, t) → 1 and
W (xr, xr, xr, ..., xr, x, t) → 0 as r → ∞ for all t > 0, that is, for each ε > 0, there exists
n ∈ N such that for all r ≥ N , we have

V (xr, xr, xr, ..., xr, x, t) > 1− ε and W (xr, xr, xr, ..., xr, x, t) < ε,

we write lim
r→∞

xr = x.

Definition 2.6. Let (X,V,W, ∗,♦) be a generalized intuitionistic fuzzy metric space.
A sequence {xr} is said to a Cauchy sequence if V (xr, xr, xr, ..., xr, xq, t) → 1 and
W (xr, xr, xr, ..., xr, xq, t) → 0 as r, q → ∞ for all t > 0, that is, for each ε > 0, there
exists n0 ∈ N such that for all r, q ≥ n0, we have

V (xr, xr, xr, ..., xr, xq, t) > 1− ε and W (xr, xr, xr, ..., xr, xq, t) < ε.

Definition 2.7. The (V,W ) fuzzy metric space (X,V,W, ∗,♦) is said to be complete if
every Cauchy sequence in X is convergent.

Definition 2.8. Let (X,V,W, ∗,♦) be a generalized intuitionistic fuzzy metric space.The
mappings P and Q, where P : X ×X → X and Q : X → X are said to be compatible
with respect to (V,W ) if for all t > 0,

lim
r→∞

V (Q(P (xr, yr)), Q(P (xr, yr)), ..., Q(P (xr, yr)), P (Q(xr), Q(yr)), t) = 1,

lim
r→∞

W (Q(P (xr, yr)), Q(P (xr, yr)), ..., Q(P (xr, yr)), P (Q(xr), Q(yr)), t) = 0,

lim
r→∞

V (Q(P (yr, xr)), Q(P (yr, xr)), ..., Q(P (yr, xr)), P (Q(yr), Q(xr)), t) = 1,

and

lim
r→∞

W (Q(P (yr, xr)), Q(P (yr, xr)), ..., Q(P (yr, xr)), P (Q(yr), Q(xr)), t) = 0,

where {xr} and {yr} are sequences in X such that lim
r→∞

Q(xr) = lim
r→∞

P (xr, yr) = x and

lim
r→∞

Q(yr) = lim
r→∞

P (yr, xr) = y for all x, y ∈ X and t > 0.

3. Main Results

In this section, we explicitly prove fixed point theorems for coupled maps on partially
ordered generalized intuitionistic fuzzy metric space.

Theorem 3.1. Let (X,≤) be a partially ordered set and (X,V,W, ∗,♦) be a complete
generalized intuitionistic fuzzy metric space. Suppose that P : X × X → X and Q :
X ×X → X are mappings such that
(3.1.1) P (X ×X) ⊆ Q(X)
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(3.1.2) P has the mixed Q - monotone property,
(3.1.3) there exist k ∈ (0, 1) such that

V (P (x, y), P (x, y), ..., P (x, y), P (u, v), kt) ≥ {V (Qx, Qx, ..., Qx, Qu, t)

∗V (Qx, Qx, ..., Qx, P (x, y), t)

∗V (Qu, Qu, ..., Qu, P (u, v), t)}

W (P (x, y), P (x, y), ..., P (x, y), P (u, v), kt) ≤ {W (Qx, Qx, ..., Qx, Qu, t)

♦W (Qx, Qx, ..., Qx, P (x, y), t)

♦W (Qu, Qu, ..., Qu, P (u, v), t)}

for all x, y, u, v ∈ X and t > 0 for which Q(x) ≤ Q(u) and Q(y) ≥ Q(v) or Q(x) ≥ Q(u)
and Q(y) ≤ Q(v),
(3.1.4) Q is continuous, and P and Q are compatible.

Also suppose that
(a) P is continuous or
(b) X has the following properties:
(i) If {xr} is a non-decreasing sequence such that xr → x, thenxr ≤ x for all r ∈ N ,
(ii) If {yr} is a non-decreasing sequence such that yr → y, thenyr ≥ y for all r ∈ N ,
If there exist x0, y0 ∈ X such that Q(x0) ≤ P (x0, y0) and Q(y0) ≥ P (y0, x0), then P and
Q have a coupled coincidence point in X.

Proof. Let (x0, y0) be a given point in X ×X such that Q(x0) ≤ P (x0, y0) and Q(y0) ≥
P (y0, x0). Using (3.1.1), choose x1, y1 such that

P (x0, y0) = Q(x1) and P (y0, x0) = Q(y1). (3.1)

Construct two sequences {xr} and {yr} in X such that

P (xr, yr) = Q(xr+1) and P (yr, xr) = Q(yr+1) for allr ≥ 0. (3.2)

Now we shall prove that

Q(xr) ≤ Q(xr+1) and Q(yr) ≥ Q(yr+1) (3.3)

We use mathematical induction.
Step 1: Let r = 0. Since Q(x0) ≤ P (x0, y0) and Q(y0) ≥ P (y0, x0). Using condi-

tion (3.1), we have Q(x0) ≤ Q(x1) and Q(y0) ≥ Q(y1). So inequalities (3.3) hold for r = 0.

Step 2: Now suppose that (3.3) hold for some fixed s ≥ 0. So we get Q(xs) ≤ Q(xs+1)
and Q(ys) ≥ Q(ys+1).

Step 3: Since P has the mixed Q-monotone property, using (3.1.6) we have

Q(xr+1) = P (xr, yr) ≤ P (xr+1, yr) andQ(yr+1) = P (yr, xr) ≥ P (yr+1, xr) (3.4)

Also,

Q(xr+2) = P (xr+1, yr+1) ≥ P (xr+1, yr) andQ(yr+2) = P (yr+1, xr+1) ≤ P (yr+1, xr)

(3.5)

From (3.4 and (3.5) we get

Q(xr) ≤ Q(xr+1) and Q(yr) ≥ Q(yr+1) (3.6)
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From the condition (3.1.3) and (3.2) we get the following inequalities;

{V (P (xr−1, yr−1), P (xr−1, yr−1), ..., P (xr−1, yr−1), P (xr, yr), kt)}
≥ {V (Qxr−1, Qxr−1, ..., Qxr−1, Qxr, t) ∗ V (Qxr−1, Qxr−1, ..., Qxr−1, P (xr−1, yr−1), t)

∗V (Qxr, Qxr, ..., Qxr, P (xr, yr), t)},

V (Qxr, Qxr, ..., Qxr, Qxr+1, kt)

≥ V (Qxr−1, Qxr−1, ..., Qxr−1, Qxr, t) ∗ V (Qxr, Qxr, ..., Qxr, Qxr+1, t),

{W (P (xr−1, yr−1), P (xr−1, yr−1), ..., P (xr−1, yr−1), P (xr, yr), kt)}
≤ {W (Qxr−1, Qxr−1, ..., Qxr−1, Qxr, t)♦W (Qxr−1, Qxr−1, ..., Qxr−1, P (xr−1, yr−1), t)

♦W (Qxr, Qxr, ..., Qxr, P (xr, yr), t)},

and

W (Qxr, Qxr, ..., Qxr, Qxr+1, kt)

≤ W (Qxr−1, Qxr−1, ..., Qxr−1, Qxr, t)♦W (Qxr, Qxr, ..., Qxr, Qxr+1, t).

Now, two cases arise.

Case 1: If V (Qxr−1, Qxr−1, ..., Qxr−1, Qxr, t) < V (Qxr, Qxr, ..., Qxr, Qxr+1, t), then

V (Qxr, Qxr, ..., Qxr, Qxr+1, kt) ≥ V (Qxr−1, Qxr−1, ..., Qxr−1, Qxr, t)

≥ V (Qxr−2, Qxr−2, ..., Qxr−2, Qxr−1,
t

k
)

≥ V (Qxr−2, Qxr−2, ..., Qxr−2, Qxr−1,
t

k2
)

.

.

.

≥ V (Qx0, Qx0, ..., Qx0, Qx1,
t

kr−1
)

and

W (Qxr, Qxr, ..., Qxr, Qxr+1, kt) ≤ W (Qxr−1, Qxr−1, ..., Qxr−1, Qxr, t)

≤ W (Qxr−2, Qxr−2, ..., Qxr−2, Qxr−1,
t

k
)

≤ W (Qxr−2, Qxr−2, ..., Qxr−2, Qxr−1,
t

k2
)

.

.

≤ W (Qx0, Qx0, ..., Qx0, Qx1,
t

kr−1
)
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Then by simple induction, for all t > 0 and r = 1, 2, ...,∞, we have that

V (Qxr, Qxr, ..., Qxr, Qxr+1, t) ≥ V (Qx0, Qx0, ..., Qx0, Qx1,
t

kr−1
)

and

W (Qxr, Qxr, ..., Qxr, Qxr+1, t) ≤W (Qx0, Qx0, ..., Qx0, Qx1,
t

kr−1
).

Thus, by condition (vi) and (xiii) of the definition of a generalized intuitionistic fuzzy
metric space, for any positive integer p and real number t > 0, we have

V (Qxr, Qxr, ..., Qxr, Qxr+p, t) ≥ {V (Qxr, Qxr, ..., Qxr, Qxr+1,
t

p
)

∗V (Qxr+1, Qxr+1, ..., Qxr+1, Qxr+2,
t

p
)

∗... p times ...

∗V (Qxr+p−1, Qxr+p−1, ..., Qxr+p−1, Qxr+p,
t

p
)}

≥ V (Qx0, Qx0, ..., Qx0, Qx1,
t

pkr−1
)

∗... p times ...

∗V (Qx0, Qx0, ..., Qx0, Qx1,
t

pkr+p−2 )

W (Qxr, Qxr, ..., Qxr, Qxr+p, t) ≤ {W (Qxr, Qxr, ..., Qxr, Qxr+1,
t

p
)

♦W (Qxr+1, Qxr+1, ..., Qxr+1, Qxr+2,
t

p
)

♦... p times ...

♦W (Qxr+p−1, Qxr+p−1, ..., Qxr+p−1, Qxr+p,
t

p
)}

≤ W (Qx0, Qx0, ..., Qx0, Qx1,
t

pkr−1
)

♦... p times ...

♦W (Qx0, Qx0, ..., Qx0, Qx1,
t

pkr+p−2 )

Therefore, taking r →∞, by definition (viii) and (xv) we get

V (Qxr, Qxr, ..., Qxr, Qxr+p, t) ≥ 1 ∗ 1 ∗ ... ∗ 1(ptimes)

and

W (Qxr, Qxr, ..., Qxr, Qxr+p, t) ≤ 0 ♦ 0 ♦ ... ♦ 0(ptimes),

which implies that {Qxn} is a Cauchy sequence in X.

Case 2: If V (Qxr−1, Qxr−1, ..., Qxr−1, Qxr, t) > V (Qxr, Qxr, ..., Qxr, Qxr+1, t), then

V (Qxr, Qxr, ..., Qxr, Qxr+1, kt) ≥ V (Qxr, Qxr, ..., Qxr, Qxr+1, t)

and

W (Qxr−1, Qxr−1, ..., Qxr−1, Qxr, t) < W (Qxr, Qxr, ..., Qxr, Qxr+1, t).
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So,

W (Qxr, Qxr, ..., Qxr, Qxr+1, kt) ≤W (Qxr, Qxr, ..., Qxr, Qxr+1, t.)

By Lemma(2.4), we get Qxr = Qxr+1. Thus, there exists a positive integer m such
that r ≥ m implies Qxr = Qxm, for all r, which shows that {Qxn} is a convergent
sequence and so a Cauchy sequence in X.

Taking x = yr, y = xr, u = yr−1, v = xr−1 in (3.1.3), we get

{V (P (yr, xr), P (yr, xr), ...,

P (yr, xr), P (yr−1, xr−1), kt)} ≥ {V (Qyr, Qyr, ..., Qyr, Qu, t)

∗V (Qyr, Qyr, ..., Qyr, P (yr, xr), t)

∗V (Qyr−1, Qyr−1, ..., Qyr−1, P (yr−1, xr−1), t)}

and

{W (P (yr, xr), P (yr, xr), ...,

P (yr, xr), P (yr−1, xr−1), kt)} ≤ {W (Qyr, Qyr, ..., Qyr, Qu, t)

♦W (Qyr, Qyr, ..., Qyr, P (yr, xr), t)

♦W (Qyr−1, Qyr−1, ..., Qyr−1, P (yr−1, xr−1), t)}

So, from equation (3.1.6) we have

V (Qyr, Qyr, ..., Qyr, Qyr+1, kt) ≥ V (Qyr−1, Qyr−1, ..., Qyr−1, Qyr, t)

∗V (Qyr, Qyr, ..., Qyr, Qyr+1, t)

W (Qyr, Qyr, ..., Qyr, Qyr+1, kt) ≤ W (Qyr−1, Qyr−1, ..., Qyr−1, Qyr, t)

♦W (Qyr, Qyr, ..., Qyr, Qyr+1, t)

In the same way, {Qyn} is a Cauchy sequence in X. Since X is a complete space, there
exist x, y ∈ X such that

lim
r→∞

P (xr, yr) = lim
r→∞

Q(xr) = x, lim
r→∞

P (yr, xr) = lim
r→∞

Q(yr) = y (3.7)

By considering condition (3.1.4) and r →∞ we have

V (Q(P (xr, yr)), Q(P (xr, yr)), ..., Q(P (xr, yr)), P (Q(xr), Q(yr), t))→ 1,

W (Q(P (xr, yr)), Q(P (xr, yr)), ..., Q(P (xr, yr)), P (Q(xr), Q(yr), t))→ 0,

and

V (Q(P (yr, xr)), Q(P (yr, xr)), ..., Q(P (yr, xr)), P (Q(yr), Q(xr), t))→ 1,

W (Q(P (yr, xr)), Q(P (yr, xr)), ..., Q(P (yr, xr)), P (Q(yr), Q(xr), t))→ 0

as r →∞. By conditions (3.1.4) and (a), since P and Q are continuous, we have

V (Q(x), Q(x), ..., Q(x), P (x, y), t) = 1,W (Q(x), Q(x), ..., Q(x), P (x, y), t) = 0

and

V (Q(y), Q(y), ..., Q(y), P (y, x), t) = 1,W (Q(y), Q(y), ..., Q(y), P (y, x), t) = 0,

This implies that P (x, y) = Q(x) and P (y, x) = Q(y), and thus, we have proved that P
and Q have a coupled coincidence point in X.
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Now, suppose that condition (3.1.4) and (b) hold. Since Q is continuous and P,Q are
compatible mappings, we have

lim
r→∞

P (Q(xr), Q(yr)) = lim
r→∞

Q(P (xr, yr)) = lim
r→∞

Q(Qxr) = Q(x) (3.8)

and

lim
r→∞

P (Q(yr), Q(xr)) = lim
r→∞

Q(P (yr, xr)) = lim
r→∞

Q(Qyr) = Q(y) (3.9)

By condition (vi) and (xiii) of a generalized intuitionistic fuzzy metric space, as r →∞,
we get

V (Qx,Qx, ..., Qx, P (x, y), t) ≥ {V (Qx,Qx, ..., Qx,Q(Qxr+1), t− kt)
∗V (Q(Qxr+1), Q(Qxr+1), ...,

Q(Qxr+1), P (x, y), kt)}
= {V (Qx,Qx, ..., Qx,Q(P (xr, yr)), t− kt)
∗V (Q(P (xr, yr)), Q(P (xr, yr))...

V (Q(P (xr, yr)), P (x, y), kt))}
≥ V (Q(P (xr, yr)), Q(P (xr, yr))...

V (Q(P (xr, yr)), P (x, y), kt))and

W (Qx,Qx, ,Qx, P (x, y), t) ≤ {W (Qx,Qx, ..., Qx,Q(Qxr+1), t− kt)
♦W (Q(Qxr+1), Q(Qxr+1), ...,

Q(Qxr+1), P (x, y), kt)}
= {W (Qx,Qx, ..., Qx,Q(P (xr, yr)), t− kt)
♦W (Q(P (xr, yr)), Q(P (xr, yr))...

W (Q(P (xr, yr)), P (x, y), kt))}
≤ W (Q(P (xr, yr)), Q(P (xr, yr))...

W (Q(P (xr, yr)), P (x, y), kt))

We get

V (Qx,Qx, ..., Qx, P (x, y), t) ≥ V (P (Qxr, Qyr), P (Qxr, Qyr), ...,

V (P (Qxr, Qyr), P (x, y), kt)) (3.10)

and

W (Qx,Qx, ..., Qx, P (x, y), t) ≤ W (P (Qxr, Qyr), P (Qxr, Qyr), ...,

W (P (Qxr, Qyr), P (x, y), kt)) (3.1.14) (3.11)

By using condition (3.1.3) and equations (3.8), (3.9), (3.10) and (3.11), we get

V (Qx,Qx, ..., Qx, P (x, y), t) ≥ {V (Q(Qxr), Q(Qxr), ..., Q(Qxr), Qx, t)

∗V (Q(Qxr), Q(Qxr), ..., P (Qxr, Qyr), t)

∗V (Qx,Qx, ..., Qx, P (x, y), t)}
≥ V (Qx,Qx, ..., Qx, P (x, y), t)
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and

W (Qx,Qx, ..., Qx, P (x, y), t) ≤ {W (Q(Qxr), Q(Qxr), ..., Q(Qxr), Qx, t)

♦W (Q(Qxr), Q(Qxr), ..., P (Qxr, Qyr), t)

♦W (Qx,Qx, ..., Qx, P (x, y), t)}
≤ W (Qx,Qx, ..., Qx, P (x, y), t)

By Lemma (2.4), we have P (x, y) = Q(x). Similarly, we get P (y, x) = Q(y). Hence, we
proved that P and Q have a coupled coincidence point in X.

Example 3.1. Let (X,≤) be a partially ordered set with X = [0, 1], a ∗ b = min{a, b}
and a♦b = max{a, b}. Let P : X ×X → X and Q : X → X be two mappings defined as

P (x, y) =


x− y

2
if x ≥ y, Q(x)n = x

0 if x < y,

This implies that P satisfies the definition of the mixed Q - monotone property. Let

V (x1, x2, x3, ..., xn, t) =
t

t+A(x1, x2,, x3, ...xn)

and

W (x1, x2, x3, ..., xn, t) =
t(x1, x2,, x3, ...xn)

t+A(x1, x2,, x3, ...xn)
,

where A(x1, x2, ..., xn) is the A- metric space defined as

A(x1, x2, ..., xn) = |x1 − x2|+ |x2 − x3|+ ...+ |xn−1 − xn|,
for all x1, x2, ..., xn ∈ X, t > 0.

Then (X,V,W, ∗,♦) be a complete generalized intuitionistic fuzzy metric space. We

take k = 1/2 and consider the sequences {xr}, {yr} in X defined by xr =
1

2r
, yr =

1

3r
.

Since

lim
r→∞

P (xr, yr) = lim
r→∞

Q(xr) = 0 = w (say),

lim
r→∞

P (yr, xr) = lim
r→∞

Q(yr) = 0 = w′ (say).

Also, P : X ×X → X and Q : X → X are compatible mappings in X. From Theorem
(3.1) we have that Q(x) ≤ Q(u) and Q(y) ≥ Q(v). This implies x ≤ u, y ≥ v. If we
consider x ≥ y, u ≥ v, then we have

V (P (x, y), P (x, y), ...., P (x, y), P (u, v), t/2) =
t/2

t/2 + 2| (x−y)−(u−v)2 |

≥ t

t+ |u+ v|
= V (Q(u), Q(u), ..., Q(u), P (u, v), t)

≥ {V (Q(x), Q(x), ..., Q(x), Q(u), t)

∗V (Q(x), Q(x), ..., Q(x), P (x, y), t)

∗V (Q(u), Q(u), ..., Q(u), P (u, v), t)}
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and

W (P (x, y), P (x, y), ...., P (x, y), P (u, v), t/2) =
2| (x−y)−(u−v)2 |

t/2 + 2| (x−y)−(u−v)2 |

≤ |u+ v|
t+ |u+ v|

= W (Q(u), Q(u), ..., Q(u), P (u, v), t)

≤ {W (Q(x), Q(x), ..., Q(x), Q(u), t)

♦W (Q(x), Q(x), ..., Q(x), P (x, y), t)

♦W (Q(u), Q(u), ..., Q(u), P (u, v), t)}.

If we consider x < y, u ≥ v, then we have

V (P (x, y), P (x, y), P (u, v), t/2) =
t/2

t/2 + 2|(u− v)/2|

≥ t

t+ 2|u− x|
≥ V (Q(x), Q(x), ..., Q(x), Q(u), t)

≥ {V (Q(x), Q(x), ..., Q(x), Q(u), t)

∗V (Q(x), Q(x), ..., Q(x), P (x, y), t)

∗V (Q(u), Q(u), ..., Q(u), P (u, v), t)}

and

W (P (x, y), P (x, y), P (u, v), t/2) =
2|(u− v)/2|

t/2 + 2|(u− v)/2|

≤ 2|u− x|
t+ 2|u− x|

≤ W (Q(x), Q(x), ..., Q(x), Q(u), t)

≤ {W (Q(x), Q(x), ..., Q(x), Q(u), t)

♦W (Q(x), Q(x), ..., Q(x), P (x, y), t)

♦W (Q(u), Q(u), ..., Q(u), P (u, v), t)}

If we consider x < y, u < v, then we get directly condition (3.1.3) of Theorem 3.1.
Therefore, all hypotheses of Theorem 3.1 hold. So we conclude that (w,w′) is a common

coupled fixed point of P and Q.
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